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1. INTRODUCTION 

DURING the past decade, fluid flow and heat transfer through 
porous media have experienced renewed research interest 
due to a broad range of applications, including geothermal 
systems, thermal insulation, metals processing, catalytic 
reactors, direct-contact heat exchangers, transpiration 
cooling, filtration, etc. In many practical systems, the porous 
medium has a high permeability (i.e. the porous media 
Reynolds numbers are high) and is bounded by an imper- 
meable wall. making Darcy’s law inapplicable. This has led 
to the inclusion of inertia and boundary effects in recent 
studies of fluid flow through porous media. Inertia effects 
can be included in the momentum equation through the so- 
called Forchheimer’s extension [I], where Darcy’s law is 
modified by the addition of a quadratic term in velocity. The 
boundary effects can be modeled through the inclusion of 
a viscous shear stress term, which has become known as 
Brinkman’s extension [2]. 

Inertia, boundary and variable-porosity effects have been 
studied extensively [3-61 in forced convection boundary layer 
flow and heat and mass transfer along a flat plate embedded 
in a porous medium. Vafai and Tien [4] have solved the 
governing equations numerically and found that the velocity 
boundary layer develops in a short distance from the leading 
edge, while its thickness is of the order J(K/e). On the other 
hand. the boundary effects can significantly alter the heat 
transfer from the plate, especially at high Prandtl numbers. 
As expected, the inertia effects are more pronounced in high 
permeability porous media and in low viscosity fluids. 

In the present study, the problem of forced convection 
flow and heat transfer along a flat plate in a porous medium 
is reexamined by including both, the inertia and boundary 
effects, while porosity variations close to the wall are not 
considered. Since the developing part of the momentum 
boundary layer has been found to be negligibly small [4], it 
is not included in the present analysis. For the case of the 
fully-developed momentum boundary layer, closed-form 
expressions are derived for the velocity and temperature 
profiles. From these results, the wall shear stress and the 
Nusselt number are determined as functions of modified 
Reynolds and Prandtl numbers. In addition, comparisons are 
made with the limiting cases of no inertia and/or boundary 
effects. Finally, several results are presented for the case of 
blowing in the wall bounding the porous medium. 

2. GOVERNING EQUATIONS 

A schematic of the physical model and coordinate system 
is shown in Fig. I. In the present analysis, the flow is assumed 
to be steady, incompressible, and two-dimensional. The 
thermophysical properties of the fluid are assumed to be 
constant. The porous medium is considered homogeneous 
and isotropic and is saturated with a fluid which is in local 
thermodynamic equilibrium with the solid matrix. Employ- 
ing the usual boundary layer approximations, the governing 
equations can be written in terms of the superficial (Darcian) 
velocity as [7] : 

continuity 

au, av, =+ay=o; (1) 

momentum 

energy 

ap 
o= -$ 

dT ar a2T 
uo;ix+ vor= G,,,i (4) 

where 

IUIJ = J(Gl+ G). 

It should be noted that, due to the inclusion of 
Forchheimer’s extension in the momentum equation (2), the 
above set of equations is valid for laminar, transition and 
turbulent flow IS]. At low velocities, Forchheimer’s extension 
becomes insignificant and Darcy’s law is recovered. In the 
transition and turbulent regime, inertia effects (i.e. separa- 
tion and wake effects) become important, which are propor- 
tional to the square of the velocity [9]. The value of the 
inertia coefficient C in Forchheimer’s extension has been 
measured experimentally by Ward [8]. Although it is now 
generally accepted that C is a function of the microstructure 
of the porous medium [lo, II], Ward has found that for a 
large variety of porous media, C can be taken as a constant 
equal to approximately 0.55. 

There has been some controversy about the value of pcfl in 
Brinkman’s extension in equation (2) [12]. As a first approxi- 
mation, pL,K is being taken equal to pf in the present study. 
The effective thermal diffusivity, c+, in equation (3) accounts 
for differences in the thermal conductivities of the fluid and 
the solid, as well as for thermal dispersion effects. 

With the foregoing simplification, the governing equations 
can be cast into dimensionless form (see the nomenclature 
section for the definitions of the dimensionless variables). 
Omitting the y-momentum equation (3). the dimensionless 
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FIG. I. Schematic of the physical model and coordinate 

system. 
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NOMENCLATURE 

c constant close to unity 
c specific heat [J kg- ’ K- ‘1 
t: inertia coefficient 
h convective heat transfer coefficient yW mm2 K- ‘] 
X- thermal conductivity I’W m- ’ K- ‘1 
K ~~cability of the porous medium [m”] 
Nu Nusselt number, defined by equation (12) 
P pressure [N m _ ‘1 
Pr modified Prandtl number, defined by equation 

(10) 
Re modified Reynolds number, defined by equation 

(9) 
T temperature [K] 

Greek symbols 
01,s effective thermal diffusivity, IcFR/pcflr [m* s- ‘1 
r complete gamma function 
8, dimensionless momentum boundary layer 

thickness, A,/JK 
bT dimensionless thermal boundary layer thickness, 

AT,!JK 
A boundary layer thickness [m] 

i 
porosity of the porous medium 
dimensionless temperature (T- ?;.)/(r,- r,) 

n dynamic viscosity [N s m-‘1 
1’ kinematic viscosity [m’ s- ‘1 
r similarity variable, defined by equation (3 I) 

II dimensionless x-component velocity, Ubjci, 
U,, x-component of the Dar&an velocity [m s- ‘1 
U, characteristic velocity, - (dP/d~K/~~ 
c dimensionless ~-component velocities, Vo/ UC 
r, dimensionless blowing velocity at the wall, 

VW1 u, 
k’o Jl-component of the Darcian velocity [m s- ‘1 
x dimensionless horizontal coordinate, X/JK 
X horizontal coordinate [m] 
.J dimensionless vertical coordinate, Y/,/K 
Y vertical coordinate [m] 
z local variable, defined by equation (21). 

; fluid density [kg m- ‘1 
~~ dinlensionless wall shear stress, defined by 

equation (1 I). 

Subscripts 
D Darcy 
eff effective 
f fluid 
f.d. fully developed 
w wall 
3 third root, see equation (19) 
SC at infinity, i.e. outside of the boundary layer. 

equations are : 

continuity 

(5) 

The boundary conditions are given by : 

at x=0: u=u,. @=I 

at y=O: u=O, tr=t),, 0-O 

au 8% 
at y-tic U = U I , -=--;=O. 

3.y c?y- 

(7) 

(8) 

From equation (6) we can see that the momentum boundary 
layer is governed by a single parameter which is the product 
of the conventional porous media Reynolds number and the 
inertia coefficient. This modified Reynolds number is defined 
as 

The Reynolds number appears directly due to the inclusion 
of the inertia term. Thus, omitting the inertia term is equi- 
valent to assuming that the Reynolds number is equal to 
zero. 

The thermal boundary layer is governed by the product 
of the modified Reynolds and Prandtl numbers, where the 
modified Prandtl number is defined as 

pr = 2 
E&C I (10) 

A similar definition of the modified Prandtl number has also 
been found useful by Jonsson and Catton [ 131 in correlating 
natural convection data. Interestingly, the ratio v/C appears 
in both, the Reynolds and Prandtl numbers. Therefore, an 
effective viscosity could be defined as v,~ E V/C, which is, 
similar to the effective thermal diffusivity ~l,,r. dependent on 
the properties of the porous medium and the fluid. 

The results for the shear stress and the heat transfer rate 
at the im~~eable wall are presented in terms of the dimen- 
sionless wall shear stress and the Nusselt number, defined as 

(12) 

3, SOLUTIONS FOR THE 
FULLY-DEVELOPED MOMENTUM 

BOUNDARY LAYER 

As pointed out by Vafdi and Tien [4] the fully developed 
momentum boundary layer is a unique feature of flow in 
porous media. In the fully-developed region, we have that 
au/& = 0 and, hence, it follows from the continuity equa- 
tion that u = 0 (for the case of no blowing at the wall). 
Therefore, the governing equations reduce to 

d’u 

dy’ ‘+ 
RCU~-1 

Since d’zr/d_p2 = 0 at y I* co. we obtain from equation (13) 
thdt 

(15) 
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3.1. Momentum boundary layer 
A closed-form analytical solution of equation (13), to- 

gether with the boundary conditions, equation (8), can be 
obtained by multiplying equation (13) by 2 du/dy and then 
integrating from y to co. The resulting equation is 

u2-u~+ iRe(u3-ui)-2(u-u,) 
1 

112 

(16) 

Hence, the wall shear stress for the fully-developed velocity 
field is found to be 

Tw = 
[ 

2 I.‘2 
2u I -ui- -Reui 

3 1 (17) 

where u, is given by equation (15). Note that for Re + 0 (i.e. 
no inertia term), both u, and 7w approach unity. Separating 
variables and integrating from 0 to y, equation (16) can be 
written as 

s u du* _ J(2Re) 

0 (G - I(*,&* - 24,) 3 y 
(18) 

where 

3 3 
u,=u,+---- 

2Re Reu, 
<o (1% 

is the third real root of the right-hand side of equation 
(16). Performing the integration, the fully-developed velocity 
profile is found to be 

z+l 
u = u,+(u,--u,) z-_1 

[ 1 
2 

(20) 

where 

z = [J-u3+J(%-u3)1 
pexp [JWu, - IM. 

rJ-%-J(G -41 
(21) 

The velocity profile expressed by equation (20) approaches 
asymptotically a simple exponential profile as Re + 0, given 
by the solution of equation (13) for Re = 0, i.e. 

u = 1 -cmy. (22) 

Due to the exponential nature of the velocity profile, it 
is difficult to define a meaningful velocity boundary layer 
thickness. If we define the boundary layer thickness as the 
point where u becomes cu,, where c is some constant close 
to unity, we obtain to a good approximation 

OI 

_1 m”.5 1 (24) 

3.2. Thermal boundary layer 
Unlike the momentum boundary layer, the thermal 

boundary layer does not reach a fully-developed condition. 
In the solution of the energy equation, equation (14), it is 
assumed that the impermeable wall is insulated up to the 
point where the momentum boundary layer is fully 
developed. Due to the complicated nature of the velocity 
profile, equation (20), a closed-form solution of equation 
(14) does not appear possible. However, two approximate 
solutions can be obtained by considering the cases of very 
small and very large Prandtl numbers. In the first case the 
thermal boundary layer thickness is much larger than the 
velocity boundary layer thickness and the velocity profile 
can be approximated by 

u(y) = u,, (Pr -9 0). (25) 

Together with the boundary conditions, equation (8), the 
solution of equation (14) is now easily obtained as 

0 =erf j(RePru,jx); 
[ 1 . (Pr+0). (26) 

The thermal boundary layer thickness and the Nusselt num- 
ber are given by 

6, =6.01/1(k) (Pr-+O) (27) 

Nu = (nx)~“2(RePru~)‘1* (Pr+0) (28) 

or by substituting equation (15), equation (28) becomes 

Nu = (27~~)~ ‘/* Pr”‘(J(1+4Re)- 1)“’ (Pr + 0). (29) 

For very large Reynolds numbers, the Nusselt number 
varies approximately as Nu cc Re’j4. For very small Reynolds 
numbers, i.e. Re --t 0 (i.e. negligible inertia effects) u, 
approaches unity and the Nusselt number is proportional to 
Re’!*. In addition, the above solution with u, = 1 is also the 
exact solution for the case of no inertia and boundary effects 
(but any Prandtl number). Hence, if both, the Reynolds and 
Prandtl numbers are small, Darcy’s law (i.e. u = 1) can safely 
be used in calculating the heat transfer rate from the imper- 
meable wall. 

In the asymptotic limit of very large Prandtl numbers, the 
thermal boundary layer is completely confined inside the 
momentum boundary layer. Leveque [14] has proposed that 
for this case, the velocity distribution inside the thermal 
boundary layer can be approximated by 

u = twy (Pr + co). 

Introducing the similarity variable 

(30) 

(31) 

the energy equation is transformed into the following ordi- 
nary differential equation 

$+352$=o. (32) 

With the boundary conditions 

O(0) = 0 and @(co) = 1 

the solution of equation (32) is given by 

d@ : 

@=d5<=” 0 I s 
exp (- c’) dc (Pr + co) 

where 

(33) 

(34) 

d@ 1 

dl ;zO = r(4/3) = “12’ (35) 

From the above solution, we can obtain the following 
Nusselt number relation 

RePrx, I” 
Nu = 0.5384 ~ 

( 1 x 
(Pr + co) (36) 

where f,, is given by equation (17) as a function of the 
Reynolds number. Again, for very large Reynolds numbers 
the Nusselt number is approximately proportional to Re’j4, 
while for Re + 0 (i.e. negligible inertia effects) z, approaches 
unity and Nu a Re”‘. 

The range of validity of the Nusselt number expressions 
for the two limiting cases Pr + 0 and Pr + 00 (i.e. equation 
(29) and equation (36), respectively) will be further discussed 
in Section 5. 
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4. SOLUTION FOR THE 
FULLY-DEVELOPED BOUNDARY LAYER 

WITH BLOWING 

In this section, some preliminary results are presented for 
the case where there is blowing at the wall bounding the 
porous medium, i.e. t$=,, = u,. From the continuity 
equation (5). we have for the fully-developed case 

(37) 

and hence 

L’(Y) = VW. (38) 

Thus, the momentum and energy equations, equations (6) 
and (7), can now be written, respectively, as 

and the boundary conditions are given by equation (8). Note 
that blowing does affect the fully-developed velocity profile 
through the inertia term in equation (39). The velocity at 
y -+ CD, i.e. D,,, is now given by the root of the equation 

1 = a, +Reu,.J(L$ +a;,,. (41) 

Following a similar procedure as in Section 3. we obtain for 
the wall shear stress the result 

where U, is given by equation (41). The solution of equation 
(39) can be expressed as 
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FIG. 2. Fully-developed velocity profiles (with and without 
blowing). 

smaller when compared to the cast of no blowing and the 
same Reynolds number. Additional calculations have shown 
that a good approximation to the velocity profile [equation 
(20)] can be obtained for all Reynolds numbers (less than 
about 100) by the equation 

;; = , _ ( 1 _ c)“‘.““ (44) 

where u, and 6, are calculated from equations (I 5) and (24), 
respectively, and, as before, c is a constant close to unity. 

The dependence of the wall shear stress on the Reynolds 

(43) 

The integral in the above equation is easily evaluated using 
standard numerical quadratures. The results for the velocity 
profile are presented in the following section. 

Because of the complicated nature of the velocity profile 
in the case of blowing, no further attempt has been made to 
solve the energy equation (40). For the limiting cases of Pr -+ 
0 and Pr -+ co (refer to Section 3), similarity solutions to the 
energy equation can only be obtained if u, - .Y- ‘~’ for Pr --f 
0, and rlW - x‘ -I“ for Pr + ,x,. Estimates for the Nusselt 
number for the asymptotic cases Pr -t 0 and Pr -+ co can, 
however, be made by using equations (41) and (42) for a, and 
r,, respectively, in the expressions for the Nusselt number 
derived in Section 3 for no blowing [equation (28) for Pr -+ 
0 and equation (36) for Pr + co]. This procedure is equi- 
valent to neglecting the term vW(B/Q) in the energy equa- 
tion (40). A ~rturbation analysis shows that these estimates 
are accurate to O(o,) and, hence, they will only be reasonable 
for small blowing velocities. 

5. RESULTS AND DISCUSSION 

The results for the fully-developed momentum boundary 
layer are shown in Figs. 24. A comparison of the velocity 
profiles for the cases with and without blowing is given in 
Fig. 2. It can be seen that with increasing Reynolds number 
both the velocity at the edge of the boundary layer (u.,) 
and the boundary layer thickness (6,) decrease. This can be 
explained by the fact that with increasing Reynolds number 
the dimensionless velocities in the porous medium decrease 
due to the increase in the inertial drag. In reality, Reynolds 
numbers greater than about IO00 would be difficult to 
achieve. As expected, with blowing at the wall, the boundary 
layer thickness is slightly larger, while the u-velocities are 

number and blowing at the wall, as given by equations (I?) 
and (42), is illustrated in Fig. 3. It can bc seen that the 
dimensionless wall shear stress approaches unity for Re -+ 0 
and zero for Re --t cu. A high Reynolds number can be ach- 
ieved by a high pressure drop, a high permeability or a low 
fluid viscosity. Actually. the dimensional wall shear stress 
decreases with increasing permeability and decreasing fluid 
viscosity, but increases for a higher pressure drop. In 

=!V 
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FIG. 3. Effect of Reynolds number on the wall shear stress 
for a fully-developed momentum boundary layer (with and 

without blowing). 
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FIG. 4. Effect of Prandtl number on the Nusselt number for a fully-developed momentum boundary layer 

(at x = 1.0). 

addition, Fig. 3 shows that, as expected, the wall shear stress 
is lower for the case of blowing at the wall. 

The Nusselt number expressions derived in Section 3 for 
the limiting cases of Pr + 0 [equation (29)] and Pr + co 
[equation (36)] are plotted as a function of the Prandtl num- 
ber in Fig. 4. It can be seen that the differences in the Nusselt 
number calculated from the two equations are fairly small 
at Prandtl numbers of the order one. Hence, equation (29) 
can safely be used for Prandtl numbers up to about 0.5, while 
equation (36) can be used for Prandtl numbers greater than 
about 10.0. The Nusselt number can be appropriately inter- 
polated from the two equations for intermediate values of the 
Prandtl number in a manner suggested by Churchill and 
Usagi [ 151. The first-order estimate proposed in Section 4 for 
the Nusselt number in the case of blowing at the wall shows 
that, in this case, the Nusselt number will be smaller than in 
the case of no blowing, which is due to the decrease in a,, 
and I, [see equations (28) and (36)]. 

6. CONCLUSIONS 

The problem of forced convection boundary layer flow 
and heat transfer along a flat plate embedded in a porous 
medium is studied by including both, inertia and boundary 
effects, It is found that the momentum and thermal boundary 
layers are governed by modified Reynolds and Prandtl num- 
bers. For the case of a fully-developed momentum boundary 
layer, a closed-form analytical solution is derived for the 
velocity profile (with and without blowing), while approxi- 
mate solutions are given for the temperature profile. It is 
shown that the velocity profile is basically of exponential 
nature, while the velocity boundary layer thickness decreases 
with increasing Reynolds number. In addition, simple 
expressions are given for the wall shear stress and the Nusselt 
number. In the case of blowing at the wall, the velocities, the 
wall shear stress, and the Nusselt number are smaller than 
in the case of no blowing and the same Reynolds and Prandtl 
numbers. 

In conclusion, it can be said that neglecting the inertia and 
boundary effects can lead to serious errors for Reynolds 
numbers greater than 0.01. Utilizing similar mathematical 
procedures as presented in the previous sections, closed- 
form solutions can also be obtained, for example, for fully- 
developed porous media flow in a circular pipe or a parallel 
plate channel [ 161 and there is no need for omitting the non- 
linear inertia term. It should be noted, however, that porosity 
variations near the wall, as present, for example, in packed 
beds of spheres, will alter the present analysis considerably 
due to channeling of the flow near the wall. 
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